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Motivation: Currents and structures in the ocean

Ocean Surface Circulation reconstruction from satellite observations and in-situ
data (NASA Visualization1)

I Energy at all scales of motion. Typical of turbulent flows.

I Long-lived coherent structures. Typical of 2D turbulence.

1Full-length high-resolution movie: http://svs.gsfc.nasa.gov/vis/a000000/a003800/a003827/.
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Energy Spectrum in the Atmosphere
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FIG. 3. Variance power spectra of wind and potential temperature near the tropopause from

GASP aircraft data. The spectra for meridional wind and temperature are shifted one and two
decades to the right, respectively; lines with slopes —3 and —
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coordinates for each variable for comparison.

then subtracted from all observations on the next leg.
The analysis was then made using the normalized
temperature data.

On selected flights the GASP system was set to
record data at 4-second (about 1 km) intervals, rather
than at 5-minute intervals. Data from the 97 high
density recording flights were analyzed as segments.
Each segment was 150 km long; i f  over five data
points were missing during any minute, that segment
was not used. Also, if  the altitude changed more than
100 m along a segment, then that segment was not
used. There were 1492 segments retained for analysis
and the average latitude of these data is about 30'N.
For each variable on each segment, the mean and a
linear trend were removed, and then the Fast Fourier
Transform was applied. The results over all segments
were averaged and plotted in Fig. 3.

Standard deviations o f  the results in  Fig. 3  are
about the same magnitude as the mean values. The
error bars are plotted to extend above and below the
mean two times the standard deviation divided by
the square root of the number of flights used to form
the mean.
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At the very longest wavelengths, spectra in Fig. 3
show a relatively small negative slope for zonal wind
and temperature and a positive slope for meridional
wind. This is characteristic o f planetary scale waves
as discussed at length by Boer and Shepherd (1983).
Between about 1000 and 3000 km wavelength, a ll
three spectra have a slope near —3. Lines with slopes
—3 and —
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all variables for comparison. The —3 slope is inter-
preted to imply an enstrophy cascade from longer to
shorter wavelengths in  quasi-geostrophic turbulence
(Charney, 1971). At  wavelengths below about 400
km, the spectra appear to follow a —
5
/
3  s l o p e .  T h e

magnitudes and general shapes of the spectra in Fig.
3 agree well with available past results for wind as
illustrated in Fig. 4.

The potential temperature spectrum contained in
Fig. 3 is the first temperature spectrum obtained over
this range of scales. The relationship of the tempera-
ture spectrum to the velocity spectra is discussed at
length in Gage and Nastrom (1985). Here we simply
point out that the temperature spectrum parallels the
velocity spectra at least down to  the scales (<300

Aircraft Measurements2.

Spectrum Interpretation

I Synoptic Scale k�3: Downscale
potential enstrophy cascade.

I Mesoscale k�5/3:
I 2D/QG Upscale energy cascade?
I 3D Downscale energy cascade?
I Something else? Gravity waves?

2G. D. Nastrom et al. (1984). Nature



Introduction Energy Cascade in Rotating/Stratified Turbulence Coherent Structures and Mean-field Theory Conclusion

Vertical Mixing and Dissipation in the ocean

Enhanced vertical mixing and dissipation over rough topography:

low-intensity microstructure. Turbulent dif-
fusivity values for the central Brazil Basin
were about 0.1 3 1024 m2 s21. We ob-
served just a slight enhancement in the
mixing over the rise within 100 m of the
bottom, most likely a result of boundary
layer turbulence. These small dissipation
estimates were surprising in that a bottom-
intensified deep western boundary current
flows above the rise (albeit at speeds of only
about 2 cm s21) that has been implicated in
mixing Brazil Basin waters (13). In contrast,
turbulent dissipation rates were elevated
one to two orders of magnitude above the
rough flanks of the MAR, particularly with-
in 300 m of the bottom.

We repeatedly sampled one spur of the
MAR with the HRP between 3 and 20
February, 1996, a period encompassing both
spring and neap tides. Turbulent diffusivity

values in this region were consistently
greater than 1024 m2 s21 within 300 m of
the bottom; within 150 m, some values
exceeded 1023 m2 s21 (Fig. 3). This region
of rough topography was chosen as the trac-
er release site. Approximately 110 kg of SF6
was released during an 8-day period on a
density surface at about 4010 m depth near
21°409S, 18°259W (Fig. 1) (14). The initial
root-mean-square vertical spread of the
tracer relative to the target density surface,
resulting from shifts in sensor calibration
between tows, was about 9 m. Tracer con-
centration broadened in the 11 days after
injection (Fig. 4). Application of a diffusion
model (15) returned a diapycnal diffusivity
value of 0.5 3 1024 6 0.5 3 1024 m2 s21.
On the basis of the 39 HRP stations made
in this region, we estimate that K between
3960 and 4060 m was 0.3 3 1024 to 0.6 3

1024 m2 s21 (95% confidence bounds). Al-
though a K value close to zero cannot be
ruled out by the tracer data, the best esti-
mate is consistent with those from the
HRP.

The microstructure data show that mix-
ing was enhanced throughout much of the
water column in regions with rough topog-
raphy. Turbulence supported directly by
bottom stress is limited to boundary layers
that are typically only tens of meters high.
That mixing occurs remote from the bot-
tom implicates wave processes that can
transport energy up from the bottom.
Steady and time-dependent bottom cur-
rents flowing over undulating bathymetry
can generate internal waves that propagate
up into the water column (16). Subsequent
instability and breaking of such waves
would provide an energy source for the tur-
bulent mixing. Consistent with this idea,
enhanced fine-scale shear and strain (17)
were observed above rough bathymetry. We
propose that the energy source for the inter-
nal waves supporting the mixing near the
MAR is the barotropic tides impinging on
the rough bathymetry of the ridge. (Mean

Fig. 1. Distribution of HRP
stations (triangles) in the Bra-
zil Basin of the South Atlantic
Ocean. Isobaths greater than
2000-m depth are depicted
with a contour interval of
1000 m. The expanded scale
plot to right shows the ship
tracks during injection of the
SF6 tracer (solid lines). The
dashed lines mark the sam-
pling tracks of the initial trac-
er survey.
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Fig. 3. Profiles of average cross-isopycnal diffu-
sivity versus depth as a function of position rel-
ative to a spur of the MAR (whose bathymetry is
shown versus latitude). Diffusivity profiles have
been offset horizontally to roughly correspond to
their physical position relative to the spur and are
plotted on a logarithmic axis. The tick marks and
color scheme denote decadal intervals, and the
vertical reference lines denote K 5 1025 m2 s21.
The 95% confidence intervals are roughly 650%
of the depicted estimates. The horizontal line
marks the average depth at which the SF6 tracer
was injected.
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Fig. 2. Depth-longitude section of cross-isopycnal diffusivity in the Brazil Basin inferred from velocity
microstructure observations. Note the nonuniform contour scale. Microstructure data from the two
quasi-zonal transects have been combined without regard to latitude. The underway bathymetric data
to 32°W is from the eastward track, the balance comes from the westward track. The white line marks
the observed depth of the 0.8°C surface.
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K. L. Polzin et al. (1997). Science

Energy dissipation rates (log):
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Figure 2 |Mechanical, a sum of kinetic and potential, energy budget
terms in (mWm�2) as a function of time. a,b, Energy budgets from
rough-topography (a) and flat-bottom (b) simulations: evolution of
mechanical energy (blue), wind power input (red), dissipation by the
bottom drag (orange), dissipation by viscous friction (green) and changes
in potential energy due to diffusion (purple). Values averaged over the last
10 days of simulations are shown in parenthesis.

deformation in the experiment is about 20 km) as well as several
smaller, submesoscale, warm- and cold-core eddies. The bottom
topography is multichromatic, randomly generated with the same
spectral characteristics as topography observed in theDrake Passage
region of the Southern Ocean16 and includes horizontal scales from
50 km down to 1 km.

The energetics of the flow in the two simulations are presented in
Fig. 2 showing the evolution of the volume-integrated mechanical
(that is, a sum of kinetic and potential) energy budget terms.
The energy budgets are closed to within a few per cent of the
wind power input terms. Both simulations are well equilibrated. In
the rough-topography simulation, there is a leading-order balance
between the wind power input at the surface of 6.4mWm�2 and
interior viscous dissipation of 6.1mWm�2. Dissipation due to
bottom drag, which parameterizes unresolved turbulence in the
bottom boundary layer, is small, 0.7mWm�2, compared with the
viscous dissipation by resolved motions. The effect of diffusion,
computed as a change in the unavailable potential energy22,23 (that
is, potential energy of a motionless fluid) and thus including
the effects of both explicit and spurious numerical diffusion, is
negligible, 0.3mWm�2. The energetics of the rough-topography
simulation suggest that the wind power input, generated by the
wind stress acting on the time-mean flow at the surface, is primarily
dissipated by interior viscous friction acting on resolved motions.
Viscous friction, which parameterizes subgrid-scale processes, is
scale dependent: it acts primary on small-scale motions with large
velocity gradients. In the simulations, the Reynolds number of
geostrophic eddies, estimated at the deformation scale of 20 km, is
O(104), implying that geostrophic eddies are inertial and essentially
inviscid. Hence, to equilibrate, geostrophic eddies must transfer
their energy to smaller-scale motions that can then be dissipated
by viscous friction. In the flat-bottom simulation, on the other
hand, viscous dissipation is small, implying that there is no
effective mechanism for the generation of small-scale motions and
therefore the bulk of the wind power input is dissipated by the
bottom drag. That is, the spontaneous generation of unbalanced
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Figure 3 | Snapshots after 40 days in the rough-bottom simulation.
a,b, Zonal sections of speed (cm s�1; a) and energy dissipation dissipation
(log10(W kg�1); b) at y= 170 km. c, Horizontal section at 2 km depth of
vertical velocity (cm s�1; blue/red) and 5 km low-pass-filtered horizontal
flow speed (cm s�1; contours). The inset plot is a zoom-in on the region
shown with the thick black line.

motion from geostrophic flows in the ocean interior is far less
efficient than the generation of unbalanced flow through eddy–
topographic interactions.

The equilibration of the flow changes markedly between the
two simulations: in the flat-bottomed simulation, the wind stress
is completely balanced by the bottom drag rather than the
topographic form stress as in the rough-topography simulation, and
the wind power input is nearly balanced by the bottom drag work
against the bottom flow rather that the interior viscous dissipation.
As a result, the system equilibrates with higher magnitude of the
flow and therefore higher wind power input.

Vertical and horizontal representations of the flows in the
rough-topography simulation are illustrated in Fig. 3. The top two
panels show zonal cross-sections of kinetic energy and viscous
energy dissipation, emphasizing large- and small-scale motions,
respectively. The kinetic energy of the flow is dominated by frontal
meanders and mesoscale eddies. Consistent with observations24,25,
the surface speed of geostrophic eddies exceeds 50 cm s�1, whereas

NATURE GEOSCIENCE | VOL 6 | JANUARY 2013 | www.nature.com/naturegeoscience 49

M. Nikurashin et al. (2013). Nature Geoscience

How can we understand the coexistence of 2D (quasi-geostrophic) turbulence
at large scales with small-scale mixing and dissipation in terms of energy
transfer across scales?
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Dynamical Models: 2D/3D Euler flows

Navier-Stokes equations for incompressible turbulent flows:

@tu+ u ·ru = �1
⇢
rP + ⌫�u+ F,

r · u = 0.

When ⌫ = F = 0 (no forcing and no dissipation), we have the Euler equations.
In terms of vorticity ! = r⇥ u,

I For a 2D domain, ! = !n, vorticity is conserved along Lagrangian
trajectories:

@t! + u ·r! = 0.

I For a 3D domain, it is not:

@t! + u ·r! = ! ·ru.
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Dynamical Models: Geophysical flows

Geophysical flows are subjected to additional forces: Coriolis force (rotation)
and buoyancy (density stratification).

I 3D Boussinesq flows:

@tu+ u ·ru = �1
⇢
rP�2⌦ez ⇥ u�N✓ez,

@t✓ + u ·r✓ = Nuz ,

r · u = 0.

Potential vorticity ⇧ = f @z✓ � N!z + ! ·r✓ is conserved:
@t⇧+ u ·r⇧ = 0.

I In the asymptotic regime of strong rotation and stratification,
quasi-geostrophic equations3:

@tq + u ·rq = 0,

q = �� + f +
@
@z

⇣ f 2

N2

@ 
@z

⌘
.

This regime describes well the large scales of the atmosphere and oceans.

3G. K. Vallis (2006). Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-scale Circulation. Cambridge University
Press
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Hamiltonian Structure

Inviscid (⌫ = 0) 2D/3D and geophysical flows have a Hamiltonian structure4:
there exist a Hamiltonian functional H and a Poisson bracket {·, ·} such that
the dynamics has a form analogous to ẋi = {xi ,H}.
E.g. 2D Turbulence: Stream function  such that ! = �� , H =

R
! /2.

!̇ = �u ·r! = @(!, ) = D(!)
�H
�!

, with D(!) = @(!, ·).

Consequences of the Poisson structure degeneracies

The operator D is degenerate:

I Infinity of steady states. For 2D/QG flows, ! = F ( ), for an arbitrary
function F .

I Additional conserved quantities:
I 3D flows: Helicity

R
! · u.

I 2D/QG/Boussinesq flows: Casimir invariants
R
s(!) (or replace vorticity !

by potential vorticity q or ⇧). In particular, there is a second quadratic
invariant, the (potential) enstrophy

R
!2.

Equivalently, the area �(�) occupied by a vorticity level � is conserved.

4R. Salmon (1988). Ann. Rev. Fluid Mech. P. J. Morrison (1998). Rev. Mod. Phys.



Introduction Energy Cascade in Rotating/Stratified Turbulence Coherent Structures and Mean-field Theory Conclusion

Hamiltonian Structure

Inviscid (⌫ = 0) 2D/3D and geophysical flows have a Hamiltonian structure:
there exist a Hamiltonian functional H and a Poisson bracket {·, ·} such that
the dynamics has a form analogous to ẋi = {xi ,H}.
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R
! · u.

I 2D/QG/Boussinesq flows: Casimir invariants
R
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by potential vorticity q or ⇧). In particular, there is a second quadratic
invariant, the (potential) enstrophy

R
!2.

Equivalently, the area �(�) occupied by a vorticity level � is conserved.

4H. K. Mo↵att (1969). J. Fluid Mech. D. Serre (1984). Physica D
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I Hamiltonian systems

I Huge number of degrees of freedom: ⇠ Re9/4

Calls for a statistical mechanics approach
But

I Infinite dimensional phase space

I Infinite number of conservation laws

I (Long-range interactions)
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Canonical distribution for Galerkin-truncated 2D flows

Truncated 2D Euler: B = {k 2 Z2, kmin  k  kmax}.
Energy and Enstrophy:

E[!] = 1
2

Z

D
! =

1
2

X

k2B

|!k|2
k2

,

G2[!] =
1
2

Z

D
!2 =

1
2

X

k2B

|!k|2.

Detailed Liouville theorem:

@!̇k

@!k
= 0, and therefore

X

k2B

@!̇k

@!k
= 0.

Any measure of the form
µ(d!) = ⇢(E[!],G2[!])d! is an
invariant measure.

Canonical probability density5:

⇢({!k}k2B) =
1
Z e��E[!]�↵G2[!],

=
1
Z e�

P
k2B(�+↵k2)

|!k|
2

2k2 ,

with Z the partition function:

Z =

Z
e�

P
k2B(�+↵k2)

|!k|
2

2k2
Y

k2B

d!k =
Y

k2B

s
2⇡k2

� + ↵k2
. Robert H. Kraichnan

(1928–2008)

5R. H. Kraichnan (1967). Phys. Fluids; R. H. Kraichnan (1975). J. Fluid Mech. R. H. Kraichnan and D. C. Montgomery (1980).
Rep. Prog. Phys.
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Canonical distribution for Galerkin-truncated 2D flows

Thermodynamic space Realizability condition:
8k 2 B,� + ↵k2 > 0.

1. ↵ > 0,� < 0: High-energy regime.

2. ↵ > 0,� > 0: Intermediate regime.

3. ↵ < 0,� > 0: High-enstrophy regime.
↵

�

�↵kmin

�↵kmax

Equilibrium Energy spectra

hEi = �@ lnZ
@�

=
1
2

X

k2B

1
� + ↵k2

; hE(k)i = ⇡k
� + ↵k2

, hEi =
Z +1

0

hE(k)idk.

k-1

k
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Infrared divergence in the � < 0 regime. Inverse cascade for 2D Turbulence.
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What about 3D Turbulence?

The Liouville theorem stills holds5. Canonical probability
density:

⇢({u+(k), u�(k)}) = 1
Z e��E�↵H ,

=
1
Z e�

P
k[(�+↵k)|u+(k)|2+(��↵k)|u�(k)|2].

Partition Function: Z =
Q

k
2⇡p

�2�↵2k2
. � > |↵|kmax > 0.

↵

��↵kmax ↵kmax

k2
k4

10-1 1 10 102
10-3

1

103

106

109

k

EHkL
,H
HkL

hEi = �@ lnZ
@�

,

=
X

k

�
�2 � ↵2k2

,

hE(k)i = 4⇡�k2

�2 � ↵2k2
.

Ultraviolet Catastrophe6

5T. D. Lee (1952). Q. Appl. Math.
6R. H. Kraichnan (1973). J. Fluid Mech.
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Rotating-Stratified Turbulence: Idealized setup

⇢(z)

Stratification

Rotation ⌦

Boussinesq Equations; Cubic domain with
periodic BC.

@tu+ u ·ru = �rP � 2⌦ez ⇥ u� N✓ez,

@✓ + u ·r✓ = Nuz ,

r · u = 0.

DNS7 (5123, Re ⇠ 104), ✓:

MARINO, MININNI, ROSENBERG, AND POUQUET PHYSICAL REVIEW E 87, 033016 (2013)

−0.4

−0.2

0

0.2

0.4

H
V

−0.4

−0.2

0

0.2

0.4

H
V

Fr = 0.0127

0 0.5 1 1.5 2 2.5 3

1

1.5

2

2.5

3

3.5

Fr = 0.0127

 N/f

Eddy turnover time

E
ns

tr
op

hy

 N = 6.283    Fr  =  0.025
 N = 1.256    Fr  =  0.127
 N = 0.783    Fr  =  0.20

 N/f ~ 1.5    Ro  =  0.019
 N/f ~ 16.7  Ro  =  0.21

1.0 3.0 16.7

FIG. 2. Top and middle: Temporal evolution of the total helicity
HV in several runs with different values of Fr, Ro, and N , as given
by the labels. Note that the time averaged value of HV is negative,
indicating negative helicity prevails in these runs even when the initial
value of the helicity is positive. On top are runs with the same Fr
whereas in the middle, runs with N/f = 1 but with different Fr are
shown. Bottom: Time evolution of the kinetic enstrophy ZV in runs
with Fr ≈ 0.01 and N = 12.56, and with different values of Ro. In
all panels, oscillations are due to gravity waves, with their period
proportional to N .

ZV , with slightly smaller values. Note that in all quantities the
oscillations are due to gravity waves because of the fact that
our initial conditions are chosen to be unbalanced, and their
periods are proportional to N . Across all runs, the maximum of
ZV varies from 30 (for weak waves) to ≈ 2.5, corresponding to
the smallest Froude number considered. The time to reach this
maximum varies from 1.5 to 3.2 τNL. The growth of enstrophy
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FIG. 4. (Color online) Variations of r = −⟨H⊥⟩⊥,t /⟨w∂zθ⟩⊥,t

[see Eq. (9)] with vertical layers of index zn; n ∈ [1,256] is the index
of the vertical plane, and the data are temporally averaged around
the peak of enstrophy. The horizontal lines give the geostrophic
balance prediction. Both runs are performed on grids of 2563

points with Re ≈ 4 × 103,Fr = 0.0127, and ReFr2 ≈ 0.672. Top:
N/f = 1.5,ReRo2 ≈ 1.51. Bottom: N/f = 16.7,ReRo2 ≈ 186.6. In
the latter case, the prediction stemming from assuming weak
nonlinearities no longer applies.

is typical of a turbulent flow, and is due to vortex stretching.
The growth in the presence of waves is weaker, a characteristic
of a wave turbulence regime.

The overall structures in this type of flows are shown in
Fig. 3, which displays the volume rendering of buoyancy
right after the peak of enstrophy for a run with Fr = 0.1 and
N/f = 4 (left), and for a run with Fr = 0.025 and N/f = 2
(right), both performed on grids of 5123 points and with
identical initial Reynolds numbers. The 3D rendering puts
in evidence the stratification and the presence of large-scale
layers; small-scale features with curved ribbons also occur for
the run with smaller stratification. The run with Fr = 0.1 shows
strong turbulent fluctuations, whereas the run with Fr = 0.025
is smoother, with weaker small-scale fluctuations.

We now examine the relation given by Eq. (9). In Fig. 4
is given the variation with the vertical index zn (i.e., the

FIG. 3. (Color online) Visualization of the buoyancy θ in runs with 5123 grids, for Re ≈ 10 000, Fr = 0.1, and Ro = 0.4 (left) and for the
same Re, Fr = 0.025, and Ro = 0.05 (right). The vertical direction is indicated by the blue arrow; dark (blue) and light (green) strata represent
respectively positive and negative variations in θ around its mean, with sizable fluctuations and structuring, and with more turbulent eddies at
higher Froude number.

033016-6

Fr = 0.1, Ro = 0.4

Non-dimensional numbers

I Stratification: Fr = U
NL

I Rotation: Ro = U
fL , (f = 2⌦)

7R. Marino et al. (2013a). Phys. Rev. E
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Energy spectrum and fluxes

Kinetic energy spectrum and fluxes, DNS (10243, Re ⇡ 103, kf = 40) of
stratified flows with or without rotation8:
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Fig. 4: (Colour on-line) Isotropic kinetic-energy spectra (top)
and normalized total energy fluxes (bottom) for three runs on
grids of 10243 points, with Re≈ 103, and Fr and Ro as indicated
by the labels. A −5/3 slope is given as a reference. The run
with pure stratification has a flat spectrum for k < kF . In the
inset are the kinetic-energy spectra: isotropic as a function of k,
parallel as a function of k∥, and perpendicular as a function of
k⊥) at a later time in the run with N/f = 2. Note the range
of wave numbers with negative flux for k < kF for some of the
runs, and that the run with pure stratification has flux close
to zero in the same range.

this can be easily verified as the dispersion relation of
inertial-gravity waves in (4) reduces to ωk =±N ; then, the
resonant condition ωk+ωp+ωq = 0 can never be fulfilled.
The generalization of this argument to the range 1/2!
N/f ! 2 is straightforward and can be found in [27]. The
absence of resonant interactions in this range may also
help coupling 2D and 3D modes (which, for the purely
rotating case, may be only weakly coupled or uncoupled,
see [34]), and can explain the enhanced transfer from 3D
to 2D modes observed in fig. 3. In that range, where
resonances are non-existent, only non-linear interactions
between eddies can operate, and they efficiently produce
an inverse cascade, unimpeded by waves.
Finally, in fig. 4, we show the isotropic kinetic-energy

spectra as well as the total energy flux at t/τNL = 26 in
several runs with 10243 grid points, kF ≈ 40, and N/f =
2, 4, and ∞ (no rotation). We also show a detail of
the isotropic, perpendicular, and parallel kinetic-energy

spectra for the run withN/f = 2 in the inset. The run with
N/f = 2 has larger scales (evidenced by the peak of the
energy spectrum at a smaller k), and in the case with pure
stratification the spectrum at large scales has flattened
out, a feature already observed by several authors and
attributed to the layering of the flow [20], as also observed
in the visualization (see fig. 1). Such a flat spectrum has
been obtained for purely stratified flows using, as a model
for the layered structure, a superposition of delta functions
in the vertical [20].
In the two runs with rotation, the inverse cascade

is present and it follows a clear −5/3 law, as would
be the case for a two-dimensional fluid [6]. However, it
cannot be discarded that this slope may be dependent on
the properties of the forcing, as for the purely rotating
case it has been observed that the energy scaling in the
inverse-cascade range depends, e.g., on the anisotropy of
the forcing [9] (note that in the present study we use
isotropic forcing). At late time, in the runs with moderate
N/f , there is a clear equipartition between the k⊥ and
k∥ dependencies, with all spectra displaying a ∼ k−5/3
scaling.
The spectra at small scale (k > kF ) are steep, but insuf-

ficient resolution precludes us from making any assessment
as to what is the scaling law at these wave numbers. We
simply note that in the purely stratified case, there is more
energy at small scale than when rotation is present: at a
fixed energy input rate, if a measurable amount of energy
goes to large scales, less can be transferred to small scales.
The fluxes confirm what is observed in the energy

spectra. Again, the lack of adequate scale separation (i.e.,
the separation between kF and kmax = np/3) at small
scale leads to positive by not quite constant energy fluxes.
However, there is a measurable transfer to small scales
(represented by the positive flux), the lesser the stronger
the rotation. At large scales (k < kF ), the energy flux
is negative and tending toward being constant, specially
in the run with N/f = 2 . This range with negative
flux is shorter in the run with N/f = 4 (and smaller in
amplitude), while the purely stratified flow has only a
very short range of wave numbers with almost negligible
negative flux. As is apparent from the results shown above,
this small flux is not enough to give any measurable growth
in the overall scale of structures or in kinetic energy.
Similar results are obtained for the spectra and fluxes in
all the runs with grids of 5123 points and kF ≈ 22.

Conclusion. – We have shown, using 5123 and 10243

simulations of the incompressible Boussinesq equations,
that the inverse energy cascade in rotating and stably
stratified turbulence is non-monotonic in N/f , and that
the combination of rotation with weak stratification
(for 1/2!N/f ! 2) results in a faster growth of large
scales than in purely rotating flows. This results from an
enhanced coupling between 3D and 2D modes (associated
with a suppression of resonant interactions), which allows
for faster transfer of energy towards 2D motions.
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Fig. 4: (Colour on-line) Isotropic kinetic-energy spectra (top)
and normalized total energy fluxes (bottom) for three runs on
grids of 10243 points, with Re≈ 103, and Fr and Ro as indicated
by the labels. A −5/3 slope is given as a reference. The run
with pure stratification has a flat spectrum for k < kF . In the
inset are the kinetic-energy spectra: isotropic as a function of k,
parallel as a function of k∥, and perpendicular as a function of
k⊥) at a later time in the run with N/f = 2. Note the range
of wave numbers with negative flux for k < kF for some of the
runs, and that the run with pure stratification has flux close
to zero in the same range.

this can be easily verified as the dispersion relation of
inertial-gravity waves in (4) reduces to ωk =±N ; then, the
resonant condition ωk+ωp+ωq = 0 can never be fulfilled.
The generalization of this argument to the range 1/2!
N/f ! 2 is straightforward and can be found in [27]. The
absence of resonant interactions in this range may also
help coupling 2D and 3D modes (which, for the purely
rotating case, may be only weakly coupled or uncoupled,
see [34]), and can explain the enhanced transfer from 3D
to 2D modes observed in fig. 3. In that range, where
resonances are non-existent, only non-linear interactions
between eddies can operate, and they efficiently produce
an inverse cascade, unimpeded by waves.
Finally, in fig. 4, we show the isotropic kinetic-energy

spectra as well as the total energy flux at t/τNL = 26 in
several runs with 10243 grid points, kF ≈ 40, and N/f =
2, 4, and ∞ (no rotation). We also show a detail of
the isotropic, perpendicular, and parallel kinetic-energy

spectra for the run withN/f = 2 in the inset. The run with
N/f = 2 has larger scales (evidenced by the peak of the
energy spectrum at a smaller k), and in the case with pure
stratification the spectrum at large scales has flattened
out, a feature already observed by several authors and
attributed to the layering of the flow [20], as also observed
in the visualization (see fig. 1). Such a flat spectrum has
been obtained for purely stratified flows using, as a model
for the layered structure, a superposition of delta functions
in the vertical [20].
In the two runs with rotation, the inverse cascade

is present and it follows a clear −5/3 law, as would
be the case for a two-dimensional fluid [6]. However, it
cannot be discarded that this slope may be dependent on
the properties of the forcing, as for the purely rotating
case it has been observed that the energy scaling in the
inverse-cascade range depends, e.g., on the anisotropy of
the forcing [9] (note that in the present study we use
isotropic forcing). At late time, in the runs with moderate
N/f , there is a clear equipartition between the k⊥ and
k∥ dependencies, with all spectra displaying a ∼ k−5/3
scaling.
The spectra at small scale (k > kF ) are steep, but insuf-

ficient resolution precludes us from making any assessment
as to what is the scaling law at these wave numbers. We
simply note that in the purely stratified case, there is more
energy at small scale than when rotation is present: at a
fixed energy input rate, if a measurable amount of energy
goes to large scales, less can be transferred to small scales.
The fluxes confirm what is observed in the energy

spectra. Again, the lack of adequate scale separation (i.e.,
the separation between kF and kmax = np/3) at small
scale leads to positive by not quite constant energy fluxes.
However, there is a measurable transfer to small scales
(represented by the positive flux), the lesser the stronger
the rotation. At large scales (k < kF ), the energy flux
is negative and tending toward being constant, specially
in the run with N/f = 2 . This range with negative
flux is shorter in the run with N/f = 4 (and smaller in
amplitude), while the purely stratified flow has only a
very short range of wave numbers with almost negligible
negative flux. As is apparent from the results shown above,
this small flux is not enough to give any measurable growth
in the overall scale of structures or in kinetic energy.
Similar results are obtained for the spectra and fluxes in
all the runs with grids of 5123 points and kF ≈ 22.

Conclusion. – We have shown, using 5123 and 10243

simulations of the incompressible Boussinesq equations,
that the inverse energy cascade in rotating and stably
stratified turbulence is non-monotonic in N/f , and that
the combination of rotation with weak stratification
(for 1/2!N/f ! 2) results in a faster growth of large
scales than in purely rotating flows. This results from an
enhanced coupling between 3D and 2D modes (associated
with a suppression of resonant interactions), which allows
for faster transfer of energy towards 2D motions.
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Seamless transition from upscale to downscale energy cascade as rotation
weakens (Ro increases).

8R. Marino et al. (2013b). Europhys. Lett.
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Absolute Equilibrium

Rotating-Stratified flows at absolute equilibrium9:
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In the two possible regimes (� > 0), the energy at equilibrium is close to
equipartition, with a possible divergence at small scales (ultraviolet
catastrophe), like in 3D turbulence, which points at a downscale cascade of
energy.

9P. Bartello (1995). J. Atmos. Sci. see M. L. Waite and P. Bartello (2004). J. Fluid Mech. for the purely stratified case.
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Normal modes of the linearized equations

Linearized Boussinesq dynamics in Fourier space10:

Ż(k) = L(k)Z(k), with Z(k) =

0

@
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�ikûk(k)
�k?✓̂(k)

1

A ,

L(k) =

0

B@
0 �f

kk
k 0

f
kk
k 0 �iN k?

k

0 �iN k?
k 0

1

CA , tL(k) = �L(k).

SpL(k) = {0, i�(k),�i�(k)}, with �(k) = k�1
q

f 2k2
k + N2k2

?.

Eigenmodes

I Two inertia-gravity wave modes Z±(k), L(k)Z±(k) = ±i�(k).

I One slow mode Z0(k) with zero linear frequency: L(k)Z0(k) = 0.

Z(k) = a0(k)Z0(k) + a�(k)Z�(k) + a+(k)Z+(k)
Slow manifold: a+(k) = a�(k) = 0.

10C. E. Leith (1980). J. Atmos. Sci. P. Bartello (1995). J. Atmos. Sci.
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Properties of slow modes

Slow manifold and balanced motion

I For rotating-stratified flows: The slow modes are in hydrostatic balance:
@zP = �⇢g ,
and geostrophic balance: r?P = �2⌦⇥ u.

I For rotating flows, the slow modes, are in geostrophic balance.

I For stratified flows, the slow modes are not in hydrostatic balance, unless
k? = 0 (vertically sheared modes).

Slow manifold and potential enstrophy

Potential vorticity ⇧ = f @k✓ � N!k + ! ·r✓, potential enstrophy
R
⇧2 is a

global invariant. Quadratic part �2:

�2 =
1
2

Z
(f @k✓ � N!k)

2 =
1
2

X

k2B

k2�(k)2

k2
?

|a0(k)|2

For stratified flows, the only modes which carry PV have k? 6= 0.
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Restricted partition function (General Idea)

"1 "� "2 "+ "

f (")

Metastable states (local minima of the
free energy f (")): restrict the integral
defining the partition function to a
subset ⇤0 of phase space11.

Absolute equilibrium:

Z(�) =

Z

⇤

e��Nh(x)µ(dx),

=

Z +1

0

e��N"⌦(")d",

⇠ e�N�(�),

�(�) = min
"2R+

(�"� s(")) = �"1 � s("1).

Restricted equilibrium:

Z 0(�) =

Z

⇤0
e��Nh(x)µ(dx),

=

Z "+

"�

e��N"⌦(")d",

⇠ e�N�0(�),

�0(�) = min
"2["�,"+]

(�"� s(")) = �"2 � s("2).

11O. Penrose and J. L. Lebowitz (1971). J. Stat. Phys. O. Penrose and J. L. Lebowitz (1979). In: Fluctuation Phenomena. Ed. by
E. W. Montroll and J. L. Lebowitz. Amsterdam: North-Holland
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Restricted partition function (Results)12

I Rotating-Stratified flows at restricted equilibrium (slow manifold only):
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� < 0 regime (I): infrared divergence of the restricted equilibrium energy
spectrum, like in 2D turbulence, which points at the existence of an
inverse cascade.

I Purely rotating flows at restricted equilibrium:
� < 0 states still exist: inverse cascade of energy by the vortical modes
(i.e. 2D modes).

I Purely stratified flows at restricted equilibrium:
� > 0 (regimes (II) and (III)): forward energy cascade.

12C. Herbert et al. (submitted). J. Fluid Mech. arXiv:1401.2103.
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Restricted partition function (Results)12
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Restricted partition function (Results)12
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inverse cascade.
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Dynamical Model

Large scales of geophysical flows well described by quasi-geostrophic equations.
For pedagogical reasons, we use the Euler equations.
2D Euler equation on a domain D

@tu+ u ·ru = �rP,

r · u = 0.

In terms of vorticity @t! + u ·r! = 0.
Energy:

E[!] = 1
2

Z

D
!(r) (r)dr, with ! = �� .

Casimir Invariants:

Cs [!] =

Z

D
s(!(r))dr, Gn[!] =

Z

D
(!(r))ndr,

A(�) =

Z

D
⇥(!(r)� �)dr, �(�) =

1
|D|

dA
d�

.

Topological constraints?
Multiple Stable Steady States: ! = F ( ). How do we select F?
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Constructing the microcanonical measure

To build the microcanonical measure, there are two di�culties:

(i) phase space is infinite-dimensional

(ii) there is an infinite number of constraints.

Formally, we define the microcanonical measure as

µE ,(�n)n2N(d!) =
1

⌦(E , (�n)n2N)
�(E[!]� E)

+1Y

k=1

�(Gk [!]� �k)
+1Y

i=1

d!i .

In fact, it should be defined as a limit measure; e.g. by introducing a finite
lattice13 or a finite number of Laplacian eigenmodes14, and conserving a finite
number of constraints.

I Monte-Carlo methods
I Mean-field theory:

I Simpler expression for µE ,(�n)n2N .
I Discussing individual macrostates rather than the ensemble15.

13see e.g. M. Potters et al. (2013). J. Stat. Mech.
14see e.g. F. Bouchet and M. Corvellec (2010). J. Stat. Mech.
15M. K. H. Kiessling (2008). AIP Conf. Proc.
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The Phenomenology of the mean-field theory

Small-scale vorticity is mixed by the flow while large-scale coherent structures
form.

Direct Numerical Simulation16: Vorticity Contours.

16B. Marston (2011). Physics; W. Qi and J. B. Marston (to appear). J. Stat. Mech.
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The Phenomenology of the mean-field theory

Two levels of description17:

I Microstates: fine-grained vorticity
field !(x).

I Macrostates: fine-grained vorticity
probability distribution ⇢(�, x),R
⇢(�, x)d� = 1.

Mean coarse-grained vorticity:
!(x) =

R
�⇢(�, x)d�.

We are going to see how to obtain the most probable macrostate ⇢(�, x).
This allows us to define the set of equilibrium states, a subclass of the
steady-states of the Euler equations, through averaging: ! = FE ,�(�)( ).

17R. Robert and J. Sommeria (1991). J. Fluid Mech. R. Robert (1991). J. Stat. Phys. J. Miller (1990). Phys. Rev. Lett. J. Miller
et al. (1992). Phys. Rev. A
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et al. (1992). Phys. Rev. A
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The Phenomenology of the mean-field theory

Two levels of description17:
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Mean coarse-grained vorticity:
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17R. Robert and J. Sommeria (1991). J. Fluid Mech. R. Robert (1991). J. Stat. Phys. J. Miller (1990). Phys. Rev. Lett. J. Miller
et al. (1992). Phys. Rev. A
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The mean-field approach: counting the microstates

Let us consider a square lattice
with N sites, and a
“coarse-grained” lattice of M
boxes containing n = N/M
sites each.

i = 1

i = M

Finite number of vorticity levels
S = {�1, . . . ,�K}: �(�) =

PK
k=1 �k�(� � �k).

I Microstates:

!̂ = (!i↵)1iM
1↵n

2 SN .

I Macrostates:

P = (pik)1iM
1kK

2 [0, 1]MK ,
KX

k=1

pik = 1,

⌫ik [!̂] =
nX

↵=1

�!i↵,�k ,

M(P) = {!̂ 2 SN | 8i , k, ⌫ik [!̂]/n = pik}
Number of microstates which realize a given macrostate:

W (P) = CardM(P) =
MY

i=1

n!
QK

k=1(npik)!
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Macrostates and global constraints

Coarse-grained vorticity field:

!i =
1
n

nX

↵=1

!i↵ =
KX

k=1

�kpik .

I The energy does not depend on the microstate but only on the macrostate

E[!̂] = 1
2N2

X

(i,↵) 6=(j,�)

Gi↵,j�!i↵!j� ,

=
1

2M2

X

i 6=j

Gij!i!j + o

✓
1
n

◆
.

I For !̂ 2 M(P),

⌫Tk [!̂] =
NX

i=1

⌫ik [!̂] = n
NX

i=1

pik ,

Global vorticity distribution constraints:

⌫Tk [P]
N

= �k .
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The mean-field approach: large deviation of the macrostate probability

Probability of a given macrostate P with energy E :

Prob(P) =
CardM(P)

Card⇤N(E ,�E)
=

W (P)
⌦N(E ,�E)

,

1
N

ln Prob(P) = � 1
M

MX

i=1

KX

k=1

pik ln pik

| {z }
SM,K [P]

�S(E) + o(1).

where we have used the Stirling approximation: ln n! = n ln n � n + O(ln n) as
n ! +1.
In other words,

ProbP ⇠
N!+1

eN(SM,K [P]�S(E)).

This is a large deviation property (level 2, Sanov’s theorem).
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The mean-field approach: thermodynamic limit

Microstates

!̂ = (!i↵)1iM
1↵n

2 SN �!
n,M,K!+1

!(r) 2 L2(D)

Macrostates

P = (pik)1iM
1kK

2 [0, 1]MK �!
n,M,K!+1

⇢(�, r)

8i 2 J1,MK,
KX

k=1

pik = 1 �!
n,M,K!+1

8r 2 D,

Z

R
⇢(�, r)d� = 1

!i =
1
n

nX

↵=1

!i↵ =
KX

k=1

�kpik �!
n,M,K!+1

!(r) =

Z

R
�⇢(�, r)d�

SM,K [P] = � 1
M

MX

i=1

KX

k=1

pik ln pik �!
n,M,K!+1

S [⇢] ⌘ �
Z

D
dr

Z

R
d�⇢(�, r) ln ⇢(�, r)

Constraints

1
2

MX

i,j=1

Gij!i!j = E �!
n,M,K!+1

E [⇢] ⌘ 1
2

Z

D2
drdr0G(r, r0)!(r)!(r0) = E

8k 2 J1,KK, 1
M

MX

i=1

pik = �(�k) �!
n,M,K!+1

8� 2 R,D�[⇢] ⌘
Z

D
⇢(�, r)dr = �(�)
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The mean-field approach: variational problem

Equilibrium states = most probable macrostates. They must minimize the large
deviation rate function, while satisfying the global constraints.
Microcanonical variational problem

S(E , �) = max
⇢

{S [⇢] | E [⇢] = E , 8� 2 R,D�[⇢] = �(�)}.

Critical points:

0 = �S �
Z

D
dr⇣(r)

Z

R
d��⇢(�, r)� ��E �

Z

R
d�↵(�)

Z

D
dr�⇢(�, r),

⇢(�, r) = exp(�1� ⇣(r)� ↵(�)� �� (r)),

⇢(�, r) =
e��� (r)�↵(�)

Z�,↵( (r))
(Gibbs states),

with

! = �� , Z�,↵(u) =
Z

R
e���u�↵(�)d�.
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The mean-field equation for the coarse-grained vorticity field

Mean-field equation:

!(r) =
1

Z�,↵( (r))
Z

R
d��e��� (r)�↵(�),

!(r) = F�,↵( (r)), with F�,↵(u) = � 1
�
d lnZ�,↵(u)

du
.

In particular, the equilibrium coarse-grained vorticity field is a stationary
solution of the 2D Euler equation. Further, it is dynamically stable.
In general, this equation is di�cult to solve:

I It is a nonlinear partial di↵erential equation.

I Analytic computation of the partition function Z�,↵(u) is rarely possible.

I We need to relate a posteriori the Lagrange parameters �,↵(�) to the
conserved quantities E , �(�).

Numerical methods: relaxation equations18, Turkington-Whitaker algorithm19,...

18R. Robert and J. Sommeria (1992). Phys. Rev. Lett. P.-H. Chavanis (2009). Eur. Phys. J. B
19B. Turkington and N. Whitaker (1996). SIAM J. Sci. Comput.
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The linear mean-field equation

When the function F�,↵ is linear, the mean-field equation can be solved
analytically. When does this happen?

I “Strong mixing” limit20: � ! 0, or “low-energy” limit:  ! 0.

I Energy-enstrophy variational problem

I Subclass of the full MRS equilibrium states21.

Then analytical computations are possible, by introducing the eigenmodes of
the Laplacian on the domain D.

20P.-H. Chavanis and J. Sommeria (1996). J. Fluid Mech.
21F. Bouchet (2008). Physica D
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Equilibrium flows on the sphere

Stable equilibrium states22

I Solid body rotations:  = ⌦⇤ cos ✓

I Dipoles:  = ⌦⇤ cos ✓ +
p

3(E � E⇤(L)) sin ✓ cos(�� �0)

Solid body rotation

For a solid-body rotation, the
invariants E and L are not independent,
they must satisfy E = 3L2/4 ⌘ E⇤(L).

22C. Herbert et al. (2012b). J. Stat. Mech.
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Equilibrium flows on the sphere

Stable equilibrium states22

I Solid body rotations:  = ⌦⇤ cos ✓

I Dipoles:  = ⌦⇤ cos ✓ +
p

3(E � E⇤(L)) sin ✓ cos(�� �0)

Solid body rotation Dipole

22C. Herbert et al. (2012b). J. Stat. Mech.
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Microcanonical Phase Diagram

-2 -1 1 2
L

1

2

E

E=E* HLL

Second-order phase transition with spontaneous symmetry breaking.23

23C. Herbert et al. (2012b). J. Stat. Mech.
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Geometrical Refinement

Stable equilibrium states

I Solid body rotations

I Dipoles

I Quadrupoles :
 1 =  20(3 cos

2 ✓� 1) + 21 sin(2✓) sin(�� �1) + 22 sin
2 ✓ sin(2(�� �2))

Theoretical Equilibrium: Quadrupole24

DNS Final State25

24C. Herbert (2013). J. Stat. Phys.
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Geometrical Refinement

Stable equilibrium states

I Solid body rotations

I Dipoles

I Quadrupoles :
 1 =  20(3 cos2 ✓� 1) + 21 sin(2✓) sin(�� �1) + 22 sin2 ✓ sin(2(�� �2))

Theoretical Equilibrium: Quadrupole24 DNS Final State25

24C. Herbert (2013). J. Stat. Phys.
25B. Marston (2011). Physics; W. Qi and J. B. Marston (to appear). J. Stat. Mech.
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Geometrical Refinement

Stable equilibrium states

I Solid body rotations

I Dipoles

I Quadrupoles :
 1 =  20(3 cos2 ✓� 1) + 21 sin(2✓) sin(�� �1) + 22 sin2 ✓ sin(2(�� �2))

Theoretical Equilibrium: Quadrupole24 DNS Final State25

Time dependent macrostates.

24C. Herbert (2013). J. Stat. Phys.
25B. Marston (2011). Physics; W. Qi and J. B. Marston (to appear). J. Stat. Mech.
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Role of the higher-order invariants

Comparing the equilibrium states with numerical simulations26:

NOT FOR DISTRIBUTION JSTAT_045P_1213 v2

Hyperviscosity and statistical equilibria of Euler turbulence 23

Figure 4: Energy spectrum E(�, m) for the coherent state of Sphere (ã) and E(nx, ny)

for that of Torus (a). For Sphere (ã), spherical wavenumber � is plotted along the

horizontal axis and the azimuthal wavenumber m is along the vertical. For Torus (a),

the x-direction wavenumber nx is along the horizontal and the y-direction wavenumber

ny is along the vertical. The presence of � > 2 modes on the sphere and k > 1 modes

on the torus is readily apparent.

Figure 5: Scatter plots of vorticity � versus streamfunction � for the coherent states of

Sphere (a) and Torus (a) found by numerical simulation. Corresponding contour plots

are shown in figure 1. The red straight line represents MRS-2 equilibria.

ranges of wavenumbers that lead to distinct resolved Casimirs. The initial state of

Torus (b) contains plane waves whose square-wavenumbers k2 are about ten times those

of Torus (a). The e�ective wavenumber, estimated as
�

��2�/(2E) using energy per unit

mass and the normalized enstrophy, is almost doubled compared to that of Torus (a).

The enstrophy is increased by a factor of 3.8, the quartic Casimir by a factor of about 13,

sixth by a factor of about 44, and higher even-order Casimirs are even more drastically

increased. The initial state of Torus (c) is chosen such that lower Casimirs remain close

to Torus (a) whereas the higher Casimirs are significantly changed, by adding a tiny

component with very high wavenumbers to a low-wavenumber background. Compared

26W. Qi and J. B. Marston (to appear). J. Stat. Mech.
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Role of the higher-order invariants

Comparing the equilibrium states with numerical simulations26: NOT FOR DISTRIBUTION JSTAT_045P_1213 v2
Hyperviscosity and statistical equilibria of Euler turbulence 22

Figure 3: Scatter plots of the radial vorticity profiles �(r) of a typical positive vortex

obtained from numerical simulation and in MRS-2. Black: numerical simulation of

Sphere (ã) (similar to Sphere (a)) and Torus (a). Red: MRS-2 symmetric quadrupole

and symmetric dipole solutions based upon the initial energies of the corresponding

numerical simulations.

with the straight line of MRS-2 equilibria. That the scatter plot for Sphere (a) shows two

branches is related to the dynamically-trapped asymmetry between the two same-signed

coherent vortices: for example, one of the negative vortex is much weaker than the other

one. The asymmetry indicates that the coherent structures still retain some memory of

the details of the initial states; it cannot be related to equilibrium features. The scatter

plots also show that the vorticity along each streamline of the fluid is approximately

single-valued. Upon reaching such a state, the nonlinear advection term in the EOM

becomes small, energy redistribution among di�erent scales due to nonlinear interaction

has almost stopped, and the structure decays linearly under hyperviscosity. Thus the

energy in the higher-wavenumber modes will never completely go to the lowest modes

to agree with MRS-2. This is confirmed by extending the integration time of Torus

(a): figure 6 shows that during the long time period from t = 3500 to t = 10 000, the

coherent vortices drift slowly around but the shape of the radial vorticity profile �(r)

maintains the same sharp peak.

The shape of the radial vorticity profile �(r) and the vorticity-streamfunction

relationship for the coherent structure are insensitive to changes in the initial resolved

Casimirs, when the odd-order resolved Casimirs are close to zero initially. This contrasts

with the findings in conservative simulations that �(r) and �-� relationship vary with

initial Casimirs [40, 41]. There is no contradiction because the resolved Casimirs in non-

conservative simulations are not the exact Casimirs of the underlying Euler flows. Here

numerical simulation for the torus is performed again but with two di�erent random

initial states. The initial states of the three runs have the same energy but di�erent

will be mentioned later can refer to ± tanh-like.

Non-linear ! �  relationships are associated to strong vorticity gradients: e.g.
the two-level system27.

26W. Qi and J. B. Marston (to appear). J. Stat. Mech.
27F. Bouchet and J. Sommeria (2002). J. Fluid Mech. A. Venaille and F. Bouchet (2011a). J. Phys. Oceanogr.
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Role of the higher-order invariants
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Figure 3: Scatter plots of the radial vorticity profiles �(r) of a typical positive vortex

obtained from numerical simulation and in MRS-2. Black: numerical simulation of

Sphere (ã) (similar to Sphere (a)) and Torus (a). Red: MRS-2 symmetric quadrupole

and symmetric dipole solutions based upon the initial energies of the corresponding

numerical simulations.

with the straight line of MRS-2 equilibria. That the scatter plot for Sphere (a) shows two

branches is related to the dynamically-trapped asymmetry between the two same-signed

coherent vortices: for example, one of the negative vortex is much weaker than the other

one. The asymmetry indicates that the coherent structures still retain some memory of

the details of the initial states; it cannot be related to equilibrium features. The scatter

plots also show that the vorticity along each streamline of the fluid is approximately

single-valued. Upon reaching such a state, the nonlinear advection term in the EOM

becomes small, energy redistribution among di�erent scales due to nonlinear interaction

has almost stopped, and the structure decays linearly under hyperviscosity. Thus the

energy in the higher-wavenumber modes will never completely go to the lowest modes

to agree with MRS-2. This is confirmed by extending the integration time of Torus

(a): figure 6 shows that during the long time period from t = 3500 to t = 10 000, the

coherent vortices drift slowly around but the shape of the radial vorticity profile �(r)

maintains the same sharp peak.

The shape of the radial vorticity profile �(r) and the vorticity-streamfunction

relationship for the coherent structure are insensitive to changes in the initial resolved

Casimirs, when the odd-order resolved Casimirs are close to zero initially. This contrasts

with the findings in conservative simulations that �(r) and �-� relationship vary with

initial Casimirs [40, 41]. There is no contradiction because the resolved Casimirs in non-

conservative simulations are not the exact Casimirs of the underlying Euler flows. Here

numerical simulation for the torus is performed again but with two di�erent random

initial states. The initial states of the three runs have the same energy but di�erent

will be mentioned later can refer to ± tanh-like.

Non-linear ! �  relationships are associated to strong vorticity gradients: e.g.
the two-level system27.
Perturbative expansion leads to core sharpening.

26W. Qi and J. B. Marston (to appear). J. Stat. Mech.
27F. Bouchet and J. Sommeria (2002). J. Fluid Mech. A. Venaille and F. Bouchet (2011a). J. Phys. Oceanogr.
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Summary

How is energy transferred across scales in geophysical turbulence?

Energy cascade for Rotating-Stratified flows

I Statistical Mechanics in the restricted ensemble provides support to the
idea that inverse cascades in rotating and rotating-stratified may exist due
to the slow modes, even though the slow manifold is not rigorously
invariant.

I On the contrary, it is predicted that the slow modes of stratified
turbulence cascade energy downscale, because of the presence of the shear
modes which do not contribute to potential enstrophy.
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Summary

How are large-scale coherent structures formed in geophysical flows?

RSM mean-field theory for quasi-2D flows

I The mean-field theory allows one to compute statistical equilibrium states,
which correspond to observed large-scale structures.

I Energy and enstrophy conservation yield complete condensation of the
energy in the gravest modes28. Higher-order Casimir invariants29 or
geometrical constraints30 can prevent the condensation from being
complete.

I Rotation can also arrest the cascade and lead to the formation of zonal
flows, through the e↵ect of waves31.

I Theoretical aspects: large deviations, non-equivalence of the statistical
ensembles32.

28F. Bouchet and M. Corvellec (2010). J. Stat. Mech.
29R. Abramov and A. J. Majda (2003). Proc. Natl. Acad. Sci. U.S.A.
30C. Herbert (2013). J. Stat. Phys.
31P. B. Rhines (1975). J. Fluid Mech.
32R. S. Ellis et al. (2000). J. Stat. Phys. F. Bouchet (2008). Physica D; P.-H. Chavanis (2009). Eur. Phys. J. B; A. Venaille and

F. Bouchet (2011b). J. Stat. Phys. C. Herbert et al. (2012a). Phys. Rev. E
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↵

�

�↵k2
min min(N2, f 2)

�↵k2
max max(N2, f 2)

Accessible thermodynamic space for rotating-stratified flows, waves (red) and
slow manifold (blue).
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The helical decomposition for the 3D Euler equation

Euler equations for 3D homogeneous isotropic turbulence:

@tu+ u ·ru = �rP,

r · u = 0.

Helical decomposition in Fourier space33: r⇥ h±(k) = ±kh±(k),

u(x) =
X

k

[u+(k)h+(k) + u�(k)h�(k)]e
ik·x,

!(x) = r⇥ u =
X

k

k[u+(k)h+(k)� u�(k)h�(k)]e
ik·x

Automatically enforces incompressibility: k · h±(k) = 0.
Energy and Helicity:

E =
1
2

Z
u(x)2dx =

1
2

X

k

[|u+(k)|2 + |u�(k)|2],

H =
1
2

Z
u(x) · !(x)dx =

1
2

X

k

k[|u+(k)|2 � |u�(k)|2].

33A Craya (1958). Publ. Sci. Tech. Ministère de l’Air; J. R. Herring (1974). Phys. Fluids; F. Wale↵e (1992). Phys. Fluids A


