

Established by the European Commission

Slide of the Seminar

Energy Cascades and Coherent Structures in Geophysical Turbulence: a statistical mechanics <u>approach</u>

Dr. Corentin Herbert

ERC Advanced Grant (N. 339032) "NewTURB" (P.I. Prof. Luca Biferale)

Università degli Studi di Roma Tor Vergata C.F. n. 80213750583 – Partita IVA n. 02133971008 - Via della Ricerca Scientifica, I – 00133 ROMA Energy Cascades and Coherent Structures in Geophysical Turbulence: a statistical mechanics approach

Corentin Herbert

National Center for Atmospheric Research, Boulder, CO, USA

with contributions from B. Dubrulle, P.-H. Chavanis, R. Marino and A. Pouquet

July 7th, 2014 University of Rome, *Tor Vergata*

Introduction	Energy Cascade in Rotating/Stratified Turbulence	Coherent Structures and Mean-field Theory	Conclusion
00000	00000000	0000000000000	00
N A 1 1	^ I I I		

Motivation: Currents and structures in the ocean

Ocean Surface Circulation reconstruction from satellite observations and in-situ data (NASA Visualization¹)

- Energy at all scales of motion. Typical of turbulent flows.
- Long-lived coherent structures. Typical of 2D turbulence.

¹Full-length high-resolution movie: http://svs.gsfc.nasa.gov/vis/a000000/a003800/a003827/.

Introduction	Energy Cascade in Rotating/Stratified Turbulence	Coherent Structures and Mean-field Theory	Conclusio
00000	00000000	0000000000000	00

Energy Spectrum in the Atmosphere

Aircraft Measurements².

Spectrum Interpretation

 Synoptic Scale k⁻³: Downscale potential enstrophy cascade.

• Mesoscale $k^{-5/3}$:

- 2D/QG Upscale energy cascade?
- 3D Downscale energy cascade?
- Something else? Gravity waves?

How can we understand the coexistence of 2D (quasi-geostrophic) turbulence at large scales with small-scale mixing and dissipation in terms of energy transfer across scales?

Dynamical Models: 2D/3D Euler flows

Navier-Stokes equations for incompressible turbulent flows:

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla P + \nu \Delta \mathbf{u} + \mathbf{F},$$

 $\nabla \cdot \mathbf{u} = 0.$

When $\nu = F = 0$ (no forcing and no dissipation), we have the *Euler equations*. In terms of *vorticity* $\boldsymbol{\omega} = \boldsymbol{\nabla} \times \mathbf{u}$,

• For a 2D domain, $\omega = \omega \mathbf{n}$, vorticity is conserved along Lagrangian trajectories:

$$\partial_t \omega + \mathbf{u} \cdot \nabla \omega = \mathbf{0}.$$

For a 3D domain, it is not:

$$\partial_t \boldsymbol{\omega} + \mathbf{u} \cdot \boldsymbol{\nabla} \boldsymbol{\omega} = \boldsymbol{\omega} \cdot \boldsymbol{\nabla} \mathbf{u}.$$

Introduction

Dynamical Models: Geophysical flows

Geophysical flows are subjected to additional forces: Coriolis force (rotation) and buoyancy (density stratification).

► 3D Boussinesq flows:

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla P - 2\Omega \mathbf{e}_z \times \mathbf{u} - N\theta \mathbf{e}_z,$$

$$\partial_t \theta + \mathbf{u} \cdot \nabla \theta = N u_z,$$

$$\nabla \cdot \mathbf{u} = 0.$$

Potential vorticity $\Pi = f \partial_z \theta - N \omega_z + \boldsymbol{\omega} \cdot \boldsymbol{\nabla} \theta$ is conserved: $\partial_t \Pi + \mathbf{u} \cdot \boldsymbol{\nabla} \Pi = 0.$

In the asymptotic regime of strong rotation and stratification, quasi-geostrophic equations³:

$$\partial_t q + \mathbf{u} \cdot \nabla q = 0,$$
 $q = -\Delta \psi + f + rac{\partial}{\partial z} \Big(rac{f^2}{N^2} rac{\partial \psi}{\partial z} \Big)$

This regime describes well the large scales of the atmosphere and oceans.

³G. K. Vallis (2006). Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-scale Circulation. Cambridge University Press

ntroduction Energy Cascade in Rotating/Stratified Turbulence	Energy Cascade in Rotating/Stratified Turbulence	Coherent Structures and Mean-field Theory	Conclusion
000000	00000000	000000000000	00

Hamiltonian Structure

Inviscid ($\nu = 0$) 2D/3D and geophysical flows have a Hamiltonian structure⁴: there exist a Hamiltonian functional \mathcal{H} and a Poisson bracket $\{\cdot, \cdot\}$ such that the dynamics has a form analogous to $\dot{x}_i = \{x_i, \mathcal{H}\}$.

E.g. 2D Turbulence: Stream function ψ such that $\omega = -\Delta \psi$, $\mathcal{H} = \int \omega \psi/2$.

$$\dot{\omega} = - \mathbf{u} \cdot \mathbf{
abla} \omega = \partial(\omega, \psi) = \mathscr{D}(\omega) rac{\delta \mathcal{H}}{\delta \omega}, \qquad ext{ with } \mathscr{D}(\omega) = \partial(\omega, \cdot).$$

Introduction	Energy Cascade in Rotating/Stratified Turbulence	Coherent Structures and Mean-field Theory	Conclusion
000000	00000000	000000000000	00

Hamiltonian Structure

Inviscid ($\nu = 0$) 2D/3D and geophysical flows have a Hamiltonian structure: there exist a Hamiltonian functional \mathcal{H} and a Poisson bracket $\{\cdot, \cdot\}$ such that the dynamics has a form analogous to $\dot{x}_i = \{x_i, \mathcal{H}\}$.

E.g. 2D Turbulence: Stream function ψ such that $\omega = -\Delta \psi$, $\mathcal{H} = \int \omega \psi/2$.

$$\dot{\omega} = -\mathbf{u}\cdot \mathbf{
abla} \omega = \partial(\omega,\psi) = \mathscr{D}(\omega)rac{\delta\mathcal{H}}{\delta\omega}, \qquad ext{ with } \mathscr{D}(\omega) = \partial(\omega,\cdot).$$

Consequences of the Poisson structure degeneracies

The operator \mathscr{D} is degenerate:

- Infinity of steady states. For 2D/QG flows, $\omega = F(\psi)$, for an arbitrary function F.
- Additional conserved quantities:
 - ▶ 3D flows: *Helicity*⁴ $\int \boldsymbol{\omega} \cdot \mathbf{u}$.
 - 2D/QG/Boussinesq flows: Casimir invariants ∫ s(ω) (or replace vorticity ω by potential vorticity q or Π). In particular, there is a second quadratic invariant, the (potential) enstrophy ∫ ω². Equivalently, the area γ(σ) occupied by a vorticity level σ is conserved.

- Hamiltonian systems
- Huge number of degrees of freedom: $\sim Re^{9/4}$

Calls for a statistical mechanics approach But

- Infinite dimensional phase space
- Infinite number of conservation laws
- (Long-range interactions)

Introduction	Energy Cascade in Rotating/Stratified Turbulence	Coherent Structures and Mean-field Theory	Conclusion
000000	00000000	0000000000000	00
Outline			

2 Energy Cascade in Rotating/Stratified Turbulence

3 Coherent Structures and Mean-field Theory

Canonical distribution for Galerkin-truncated 2D flows

Truncated 2D Euler: $\mathcal{B} = \{\mathbf{k} \in \mathbb{Z}^2, k_{\min} \leq k \leq k_{\max}\}.$

Energy and Enstrophy:

$$\mathcal{E}[\omega] = rac{1}{2} \int_{\mathcal{D}} \omega \psi = rac{1}{2} \sum_{\mathbf{k} \in \mathcal{B}} rac{|\omega_{\mathbf{k}}|^2}{k^2},$$
 $\mathcal{G}_2[\omega] = rac{1}{2} \int_{\mathcal{D}} \omega^2 = rac{1}{2} \sum_{\mathbf{k} \in \mathcal{B}} |\omega_{\mathbf{k}}|^2.$

Canonical probability density⁵:

$$egin{aligned} &
ho(\{\omega_{\mathbf{k}}\}_{\mathbf{k}\in\mathcal{B}}) = rac{1}{\mathcal{Z}}e^{-eta\mathcal{E}[\omega]-lpha\mathcal{G}_{2}[\omega]}, \ &= rac{1}{\mathcal{Z}}e^{-\sum_{\mathbf{k}\in\mathcal{B}}(eta+lpha k^{2})rac{|\omega_{\mathbf{k}}|^{2}}{2k^{2}}}, \end{aligned}$$

with \mathcal{Z} the *partition function*:

$$\mathcal{Z} = \int e^{-\sum_{\mathbf{k}\in\mathcal{B}}(\beta+\alpha k^2)\frac{|\omega_{\mathbf{k}}|^2}{2k^2}} \prod_{\mathbf{k}\in\mathcal{B}} d\omega_{\mathbf{k}} = \prod_{\mathbf{k}\in\mathcal{B}} \sqrt{\frac{2\pi k^2}{\beta+\alpha k^2}}.$$

Detailed Liouville theorem:

$$\frac{\partial \dot{\omega}_{\mathbf{k}}}{\partial \omega_{\mathbf{k}}} = 0, \text{ and therefore } \sum_{\mathbf{k} \in \mathcal{B}} \frac{\partial \dot{\omega}_{\mathbf{k}}}{\partial \omega_{\mathbf{k}}} = 0.$$

Any measure of the form $\mu(d\omega) = \rho(\mathcal{E}[\omega], \mathcal{G}_2[\omega])d\omega$ is an invariant measure.

Robert H. Kraichnan (1928–2008)

⁵R. H. Kraichnan (1967). *Phys. Fluids*; R. H. Kraichnan (1975). *J. Fluid Mech.* R. H. Kraichnan and D. C. Montgomery (1980). *Rep. Prog. Phys.*

Canonical distribution for Galerkin-truncated 2D flows

Thermodynamic space Realizability condition: $\forall \mathbf{k} \in \mathcal{B}, \beta + \alpha k^2 > 0.$

- 1. $\alpha > 0, \beta < 0$: High-energy regime.
- 2. $\alpha > 0, \beta > 0$: Intermediate regime.
- 3. $\alpha < 0, \beta > 0$: High-enstrophy regime.

Equilibrium Energy spectra

$$\langle E \rangle = -\frac{\partial \ln \mathcal{Z}}{\partial \beta} = \frac{1}{2} \sum_{\mathbf{k} \in \mathcal{B}} \frac{1}{\beta + \alpha k^2}; \langle E(k) \rangle = \frac{\pi k}{\beta + \alpha k^2}, \langle E \rangle = \int_0^{+\infty} \langle E(k) \rangle dk.$$

Infrared divergence in the β < 0 *regime.* Inverse cascade for 2D Turbulence.

Introduction	Energy Cascade in Rotating/Stratified Turbulence	Coherent Structures and Mean-field Theory	Conclusion
000000	O●○○○○○○		00
What abou	t 3D Turbulence?		
The Liouvi	Ile theorem stills holds ⁵ . Canonical p $u_{-}(\mathbf{k})$ }) = $\frac{1}{\mathcal{Z}}e^{-\beta E - \alpha H}$,	probability	αk_{max}
density: $ ho(\{u_+({f k}),$	= $\frac{1}{\mathcal{Z}}e^{-\sum_{\mathbf{k}}[(\beta + \alpha k) u_{+}(\mathbf{k}) ^{2} + (\beta - \alpha k)]}$	$-\alpha k_{max} \beta$ $(\alpha k) u_{-}(\mathbf{k}) ^{2}].$	

Ultraviolet Catastrophe⁶

⁵T. D. Lee (1952). *Q. Appl. Math.* ⁶R. H. Kraichnan (1973). J. Fluid Mech.

Introduction	Energy Cascade in Rotating/Stratified Turbulence	Coherent Structures and Mean-field Theory	Conclusion
000000	000000	0000000000000	00

Rotating-Stratified Turbulence: Idealized setup

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla P - 2\Omega \mathbf{e}_z \times \mathbf{u} - N\theta \mathbf{e}_z,$$

$$\partial \theta + \mathbf{u} \cdot \nabla \theta = Nu_z,$$

$$\nabla \cdot \mathbf{u} = 0.$$

 DNS^7 (512 3 , $\mathsf{Re} \sim 10^4$), heta:

Fr = 0.1, Ro = 0.4

Non-dimensional numbers Stratification: $Fr = \frac{U}{NL}$ Rotation: $Ro = \frac{U}{fL}$, $(f = 2\Omega)$

Introduction

Energy spectrum and fluxes

Kinetic energy spectrum and fluxes, DNS (1024³, Re $\approx 10^3$, $k_f = 40$) of stratified flows with or without rotation⁸:

Seamless transition from upscale to downscale energy cascade as rotation weakens (Ro increases).

Introduction	Energy Cascade in Rotating/Stratified Turbulence	Coherent Structures and Mean-field Theory	Conclusion
000000	00000000	000000000000000000000000000000000000000	00
Absolute	Equilibrium		

Rotating-Stratified flows at absolute equilibrium⁹:

In the two possible regimes ($\beta > 0$), the energy at equilibrium is close to equipartition, with a possible divergence at small scales (ultraviolet catastrophe), like in 3D turbulence, which points at a *downscale cascade of energy*.

Introduction	Energy Cascade in Rotating/Stratified Turbulence	Coherent Structures and Mean-field Theory	Conclusion
000000	00000000	0000000000000	00

Normal modes of the linearized equations

Linearized Boussinesq dynamics in Fourier space¹⁰:

$$\dot{\mathbf{Z}}(\mathbf{k}) = \mathbf{L}(\mathbf{k})\mathbf{Z}(\mathbf{k}), \text{ with } \mathbf{Z}(\mathbf{k}) = \begin{pmatrix} \hat{\omega}_{\parallel}(\mathbf{k}) \\ -ik\hat{u}_{\parallel}(\mathbf{k}) \\ -k_{\perp}\hat{\theta}(\mathbf{k}) \end{pmatrix},$$
$$\mathbf{L}(\mathbf{k}) = \begin{pmatrix} 0 & -f\frac{k_{\parallel}}{k} & 0 \\ f\frac{k_{\parallel}}{k} & 0 & -iN\frac{k_{\perp}}{k} \\ 0 & -iN\frac{k_{\perp}}{k} & 0 \end{pmatrix}, \quad {}^{t}\overline{\mathbf{L}(\mathbf{k})} = -\mathbf{L}(\mathbf{k}).$$

$$\mathsf{Sp}\,\mathbf{L}(\mathbf{k}) = \{0, i\sigma(\mathbf{k}), -i\sigma(\mathbf{k})\}, \text{ with } \sigma(\mathbf{k}) = k^{-1}\sqrt{f^2k_{\parallel}^2 + N^2k_{\perp}^2}.$$

Eigenmodes

- Two *inertia-gravity wave modes* $Z_{\pm}(k)$, $L(k)Z_{\pm}(k) = \pm i\sigma(k)$.
- One *slow mode* $Z_0(k)$ with zero linear frequency: $L(k)Z_0(k) = 0$.

 $Z(k) = a_0(k)Z_0(k) + a_-(k)Z_-(k) + a_+(k)Z_+(k)$ Slow manifold: $a_+(k) = a_-(k) = 0$.

Properties of slow modes

Slow manifold and balanced motion

- For rotating-stratified flows: The slow modes are in *hydrostatic balance*: ∂_zP = −ρg, and *geostrophic balance*: ∇_⊥P = −2**Ω** × **u**.
- ► For rotating flows, the slow modes, are in *geostrophic balance*.
- For stratified flows, the slow modes are not in hydrostatic balance, unless k_⊥ = 0 (vertically sheared modes).

Slow manifold and potential enstrophy

Potential vorticity $\Pi = f \partial_{\parallel} \theta - N \omega_{\parallel} + \boldsymbol{\omega} \cdot \boldsymbol{\nabla} \theta$, potential enstrophy $\int \Pi^2$ is a global invariant. Quadratic part Γ_2 :

$$\Gamma_2 = rac{1}{2} \int (f \partial_{\parallel} heta - N \omega_{\parallel})^2 = rac{1}{2} \sum_{\mathbf{k} \in \mathcal{B}} rac{k^2 \sigma(\mathbf{k})^2}{k_{\perp}^2} |a_0(\mathbf{k})|^2$$

For stratified flows, the only modes which carry PV have $k_{\perp} \neq 0$.

Introduction	Energy Cascade in Rotating/Stratified Turbulence	Coherent Structures and Mean-field Theory	Conclusion
000000	00000000	000000000000000000000000000000000000000	00
Restricted	partition function (General I	dea)	

Absolute equilibrium:

$$egin{split} \mathcal{Z}(eta) &= \int_{\Lambda} e^{-eta extsf{Nh}(x)} \mu(dx), \ &= \int_{0}^{+\infty} e^{-eta extsf{N}arepsilon} \Omega(arepsilon) darepsilon, \ &\sim e^{-N\phi(eta)}, \end{split}$$

Metastable states (local minima of the free energy $f(\varepsilon)$): restrict the integral defining the partition function to a subset Λ' of phase space¹¹.

Restricted equilibrium:

$$egin{aligned} \mathcal{Z}'(eta) &= \int_{\Lambda'} e^{-eta extsf{Nh}(x)} \mu(dx), \ &= \int_{arepsilon_-}^{arepsilon_+} e^{-eta extsf{N}arepsilon} \Omega(arepsilon) darepsilon, \ &\sim e^{-N \phi'(eta)}, \end{aligned}$$

$$\phi(\beta) = \min_{\varepsilon \in \mathbb{R}_+} (\beta \varepsilon - s(\varepsilon)) = \beta \varepsilon_1 - s(\varepsilon_1). \qquad \phi'(\beta) = \min_{\varepsilon \in [\varepsilon_-, \varepsilon_+]} (\beta \varepsilon - s(\varepsilon)) = \beta \varepsilon_2 - s(\varepsilon_2)$$

¹¹O. Penrose and J. L. Lebowitz (1971). *J. Stat. Phys.* O. Penrose and J. L. Lebowitz (1979). In: *Fluctuation Phenomena*. Ed. by E. W. Montroll and J. L. Lebowitz. Amsterdam: North-Holland

Rotating-Stratified flows at restricted equilibrium (slow manifold only):

 β < 0 regime (I): infrared divergence of the restricted equilibrium energy spectrum, like in 2D turbulence, which points at the existence of an inverse cascade.

Rotating-Stratified flows at restricted equilibrium (slow manifold only):

 β < 0 regime (I): infrared divergence of the restricted equilibrium energy spectrum, like in 2D turbulence, which points at the existence of an inverse cascade.

Purely rotating flows at restricted equilibrium:

 β < 0 states still exist: inverse cascade of energy by the vortical modes (i.e. 2D modes).

Rotating-Stratified flows at restricted equilibrium (slow manifold only):

 β < 0 regime (I): infrared divergence of the restricted equilibrium energy spectrum, like in 2D turbulence, which points at the existence of an inverse cascade.

- Purely rotating flows at restricted equilibrium:
 β < 0 states still exist: inverse cascade of energy by the vortical modes (i.e. 2D modes).
- Purely stratified flows at restricted equilibrium: $\beta > 0$ (regimes (II) and (III)): forward energy cascade.

Introduction	Energy Cascade in Rotating/Stratified Turbulence	Coherent Structures and Mean-field Theory	Conclusion
000000	00000000	0000000000000	00
Outline			

1 Introduction

2 Energy Cascade in Rotating/Stratified Turbulence

3 Coherent Structures and Mean-field Theory

4 Conclusion

Introduction	Energy Cascade in Rotating/Stratified Turbulence	Coherent Structures and Mean-field Theory	Conclusion
000000	00000000	000000000000000000000000000000000000000	00
Dynamica	al Model		

Large scales of geophysical flows well described by *quasi-geostrophic equations*. For pedagogical reasons, we use the Euler equations. **2D Euler equation** on a domain \mathcal{D}

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla P,$$

 $\nabla \cdot \mathbf{u} = 0.$

In terms of vorticity $\partial_t \omega + \mathbf{u} \cdot \nabla \omega = 0$. Energy:

$$\mathcal{E}[\omega] = rac{1}{2} \int_{\mathcal{D}} \omega(\mathbf{r}) \psi(\mathbf{r}) d\mathbf{r}, ext{ with } \omega = -\Delta \psi.$$

Casimir Invariants:

$$\mathcal{C}_{s}[\omega] = \int_{\mathcal{D}} s(\omega(\mathbf{r})) d\mathbf{r}, \qquad \qquad \mathcal{G}_{n}[\omega] = \int_{\mathcal{D}} (\omega(\mathbf{r}))^{n} d\mathbf{r},$$
$$\mathcal{A}(\sigma) = \int_{\mathcal{D}} \Theta(\omega(\mathbf{r}) - \sigma) d\mathbf{r}, \qquad \qquad \gamma(\sigma) = \frac{1}{|\mathcal{D}|} \frac{dA}{d\sigma}.$$

Topological constraints?

Multiple Stable Steady States: $\omega = F(\psi)$. How do we select *F*?

Constructing the microcanonical measure

To build the microcanonical measure, there are two difficulties:

- (i) phase space is infinite-dimensional
- (ii) there is an infinite number of constraints.

Formally, we define the *microcanonical measure* as

$$\mu_{E,(\Gamma_n)_{n\in\mathbb{N}}}(d\omega)=\frac{1}{\Omega(E,(\Gamma_n)_{n\in\mathbb{N}})}\delta(\mathcal{E}[\omega]-E)\prod_{k=1}^{+\infty}\delta(\mathcal{G}_k[\omega]-\Gamma_k)\prod_{i=1}^{+\infty}d\omega_i.$$

In fact, it should be defined as a limit measure; e.g. by introducing a finite lattice¹³ or a finite number of Laplacian eigenmodes¹⁴, and conserving a finite number of constraints.

- Monte-Carlo methods
- Mean-field theory:
 - Simpler expression for $\mu_{E,(\Gamma_n)_n \in \mathbb{N}}$.
 - Discussing individual macrostates rather than the ensemble¹⁵.

¹³see e.g. M. Potters et al. (2013). J. Stat. Mech.

¹⁴see e.g. F. Bouchet and M. Corvellec (2010). J. Stat. Mech.

¹⁵M. K. H. Kiessling (2008). *AIP Conf. Proc.*

The Phenomenology of the mean-field theory

Small-scale vorticity is mixed by the flow while large-scale coherent structures form.

Direct Numerical Simulation¹⁶: Vorticity Contours.

Introduction 000000

The Phenomenology of the mean-field theory

Two levels of description¹⁷:

 Microstates: fine-grained vorticity field ω(x).

¹⁷R. Robert and J. Sommeria (1991). J. Fluid Mech. R. Robert (1991). J. Stat. Phys. J. Miller (1990). Phys. Rev. Lett. J. Miller et al. (1992). Phys. Rev. A

The Phenomenology of the mean-field theory

Two levels of description¹⁷:

- Microstates: fine-grained vorticity field ω(x).

¹⁷R. Robert and J. Sommeria (1991). J. Fluid Mech. R. Robert (1991). J. Stat. Phys. J. Miller (1990). Phys. Rev. Lett. J. Miller et al. (1992). Phys. Rev. A

The Phenomenology of the mean-field theory

Two levels of description¹⁷:

- Microstates: fine-grained vorticity field ω(x).
- Macrostates: fine-grained vorticity probability distribution ρ(σ, **x**), ∫ ρ(σ, **x**)dσ = 1. Mean coarse-grained vorticity: ω(**x**) = ∫ σρ(σ, **x**)dσ.

We are going to see how to obtain the most probable macrostate $\rho(\sigma, \mathbf{x})$. This allows us to define the set of *equilibrium states*, a subclass of the steady-states of the Euler equations, through averaging: $\overline{\omega} = F_{E,\gamma(\sigma)}(\overline{\psi})$.

¹⁷R. Robert and J. Sommeria (1991). J. Fluid Mech. R. Robert (1991). J. Stat. Phys. J. Miller (1990). Phys. Rev. Lett. J. Miller et al. (1992). Phys. Rev. A

Introduction	Energy Cascade in Rotating/Stratified Turbulence	Coherent Structures and Mean-field Theory	Conclusio
000000	00000000	000000000000	00

The mean-field approach: counting the microstates

Let us consider a square lattice with N sites, and a "coarse-grained" lattice of M boxes containing n = N/Msites each.

Finite number of vorticity levels $\mathfrak{S} = \{\sigma_1, \ldots, \sigma_K\}: \gamma(\sigma) = \sum_{k=1}^{K} \gamma_k \delta(\sigma - \sigma_k).$

Microstates:

$$\hat{\omega} = (\omega_{i\alpha})_{\substack{1 \leq i \leq M \\ 1 \leq \alpha \leq n}} \in \mathfrak{S}^N.$$

Macrostates:

$$P=(p_{ik})_{\substack{1\leq i\leq M\ 1\leq k\leq K}}\in \left[0,1
ight]^{MK}, \sum_{k=1}^{K}p_{ik}=1,$$

$$\nu_{ik}[\hat{\omega}] = \sum_{\alpha=1}^{n} \delta_{\omega_{i\alpha},\sigma_{k}},$$

$$\mathfrak{M}(P) = \{ \hat{\omega} \in \mathfrak{S}^N \mid \forall i, k, \nu_{ik}[\hat{\omega}]/n = p_{ik} \}$$

Number of microstates which realize a given macrostate:

$$W(P) = \operatorname{Card} \mathfrak{M}(P) = \prod_{i=1}^{M} rac{n!}{\prod_{k=1}^{K} (np_{ik})!}$$

Introduction	Energy Cascade in Rotating/Stratified Turbulence	Coherent Structures and Mean-field Theory	Conclusion
000000	00000000	000000000000	00

Macrostates and global constraints

Coarse-grained vorticity field:

$$\overline{\omega}_i = \frac{1}{n} \sum_{\alpha=1}^n \omega_{i\alpha} = \sum_{k=1}^K \sigma_k p_{ik}.$$

The energy does not depend on the microstate but only on the macrostate

$$\mathcal{E}[\hat{\omega}] = rac{1}{2N^2} \sum_{(i,lpha)
eq (j,eta)} G_{ilpha,jeta} \omega_{ilpha} \omega_{jeta},
onumber \ = rac{1}{2M^2} \sum_{i
eq j} G_{ij} \overline{\omega}_i \overline{\omega}_j + o\left(rac{1}{n}
ight).$$

• For $\hat{\omega} \in \mathfrak{M}(P)$,

$$\nu_k^T[\hat{\omega}] = \sum_{i=1}^N \nu_{ik}[\hat{\omega}] = n \sum_{i=1}^N p_{ik},$$

Global vorticity distribution constraints:

$$\frac{\nu_k^T[P]}{N} = \gamma_k.$$

The mean-field approach: large deviation of the macrostate probability

Probability of a given macrostate P with energy E:

$$\operatorname{Prob}(P) = \frac{\operatorname{Card}\mathfrak{M}(P)}{\operatorname{Card}\Lambda_N(E,\Delta E)} = \frac{W(P)}{\Omega_N(E,\Delta E)},$$
$$\frac{1}{N}\operatorname{In}\operatorname{Prob}(P) = -\frac{1}{M}\sum_{i=1}^M\sum_{k=1}^K p_{ik}\ln p_{ik} - S(E) + o(1).$$
$$\underbrace{\mathscr{S}_{M,K}[P]}$$

where we have used the Stirling approximation: $\ln n! = n \ln n - n + O(\ln n)$ as $n \to +\infty$. In other words,

Prob
$$P \sim e^{N(\mathscr{S}_{M,K}[P]-S(E))}$$

This is a *large deviation property* (level 2, Sanov's theorem).

The mean-field approach: thermodynamic limit

Microstates

$$\hat{\omega} = (\omega_{i\alpha})_{\substack{1 \leq i \leq M \\ 1 \leq \alpha \leq n}} \in \mathfrak{S}^{N} \xrightarrow[n,M,K \to +\infty]{} \omega(\mathbf{r}) \in L^{2}(\mathcal{D})$$

Macrostates

$$P = (p_{ik})_{\substack{1 \le i \le M \\ 1 \le k \le K }} \in [0, 1]^{MK} \xrightarrow[n, M, \overline{K} \to +\infty]{} \rho(\sigma, \mathbf{r})$$

$$\forall i \in [[1, M]], \sum_{k=1}^{K} p_{ik} = 1 \xrightarrow[n, M, \overline{K} \to +\infty]{} \forall \mathbf{r} \in \mathcal{D}, \int_{\mathbb{R}} \rho(\sigma, \mathbf{r}) d\sigma = 1$$

$$\overline{\omega}_{i} = \frac{1}{n} \sum_{\alpha=1}^{n} \omega_{i\alpha} = \sum_{k=1}^{K} \sigma_{k} p_{ik} \xrightarrow[n, M, \overline{K} \to +\infty]{} \overline{\omega}(\mathbf{r}) = \int_{\mathbb{R}} \sigma \rho(\sigma, \mathbf{r}) d\sigma$$

$$\mathscr{S}_{M, K}[P] = -\frac{1}{M} \sum_{i=1}^{M} \sum_{k=1}^{K} p_{ik} \ln p_{ik} \xrightarrow[n, M, \overline{K} \to +\infty]{} \mathscr{S}[\rho] \equiv -\int_{\mathcal{D}} d\mathbf{r} \int_{\mathbb{R}} d\sigma \rho(\sigma, \mathbf{r}) \ln \rho(\sigma, \mathbf{r})$$

Constraints

$$\frac{1}{2}\sum_{i,j=1}^{M} G_{ij}\overline{\omega}_{i}\overline{\omega}_{j} = E \xrightarrow[n,M,K\to+\infty]{} \mathscr{E}[\rho] \equiv \frac{1}{2}\int_{\mathcal{D}^{2}} d\mathbf{r}d\mathbf{r}'G(\mathbf{r},\mathbf{r}')\overline{\omega}(\mathbf{r})\overline{\omega}(\mathbf{r}') = E$$
$$\forall k \in \llbracket 1, K \rrbracket, \frac{1}{M}\sum_{i=1}^{M} \rho_{ik} = \gamma(\sigma_{k}) \xrightarrow[n,M,K\to+\infty]{} \forall \sigma \in \mathbb{R}, \mathscr{D}_{\sigma}[\rho] \equiv \int_{\mathcal{D}} \rho(\sigma,\mathbf{r})d\mathbf{r} = \gamma(\sigma)$$

The mean-field approach: variational problem

Equilibrium states = most probable macrostates. They must minimize the large deviation rate function, while satisfying the global constraints. **Microcanonical variational problem**

$$S(E,\gamma) = \max_{\rho} \{ \mathscr{S}[\rho] \mid \mathscr{E}[\rho] = E, \forall \sigma \in \mathbb{R}, \mathscr{D}_{\sigma}[\rho] = \gamma(\sigma) \}.$$

Critical points:

$$0 = \delta \mathscr{S} - \int_{\mathcal{D}} d\mathbf{r} \zeta(\mathbf{r}) \int_{\mathbb{R}} d\sigma \delta \rho(\sigma, \mathbf{r}) - \beta \delta \mathscr{E} - \int_{\mathbb{R}} d\sigma \alpha(\sigma) \int_{\mathcal{D}} d\mathbf{r} \delta \rho(\sigma, \mathbf{r}),$$

$$\rho(\sigma, \mathbf{r}) = \exp(-1 - \zeta(\mathbf{r}) - \alpha(\sigma) - \beta \sigma \overline{\psi}(\mathbf{r})),$$

$$\rho(\sigma, \mathbf{r}) = \frac{e^{-\beta \sigma \overline{\psi}(\mathbf{r}) - \alpha(\sigma)}}{\mathcal{Z}_{\beta,\alpha}(\overline{\psi}(\mathbf{r}))} \qquad \text{(Gibbs states)},$$

with

$$\overline{\omega} = -\Delta \overline{\psi}, \qquad \mathcal{Z}_{\beta,\alpha}(u) = \int_{\mathbb{R}} e^{-\beta \sigma u - \alpha(\sigma)} d\sigma.$$

The mean-field equation for the coarse-grained vorticity field

Mean-field equation:

$$ar{\omega}(\mathbf{r}) = rac{1}{\mathcal{Z}_{eta,lpha}(\overline{\psi}(\mathbf{r}))} \int_{\mathbb{R}} d\sigma \sigma e^{-eta \sigma \overline{\psi}(\mathbf{r}) - lpha(\sigma)},$$

 $ar{\omega}(\mathbf{r}) = F_{eta,lpha}(\overline{\psi}(\mathbf{r})), \qquad ext{with } F_{eta,lpha}(u) = -rac{1}{eta} rac{d \ln \mathcal{Z}_{eta,lpha}(u)}{du}$

In particular, the equilibrium coarse-grained vorticity field is a stationary solution of the 2D Euler equation. Further, it is dynamically stable. In general, this equation is difficult to solve:

- It is a nonlinear partial differential equation.
- Analytic computation of the partition function $\mathcal{Z}_{\beta,\alpha}(u)$ is rarely possible.
- We need to relate a posteriori the Lagrange parameters β, α(σ) to the conserved quantities E, γ(σ).

Numerical methods: relaxation equations¹⁸, Turkington-Whitaker algorithm¹⁹,...

¹⁹B. Turkington and N. Whitaker (1996). *SIAM J. Sci. Comput.*

¹⁸R. Robert and J. Sommeria (1992). *Phys. Rev. Lett.* P.-H. Chavanis (2009). *Eur. Phys. J. B*

The linear mean-field equation

When the function $F_{\beta,\alpha}$ is linear, the mean-field equation can be solved analytically. When does this happen?

- "Strong mixing" limit²⁰: $\beta \rightarrow 0$, or "low-energy" limit: $\overline{\psi} \rightarrow 0$.
- Energy-enstrophy variational problem
- Subclass of the full MRS equilibrium states²¹.

Then analytical computations are possible, by introducing the eigenmodes of the Laplacian on the domain \mathcal{D} .

Introduction	Energy Cascade in Rotating/Stratified Turbulence	Coherent Structures and Mean-field Theory	Conclusion
000000	0000000	000000000000000000000000000000000000000	00

Equilibrium flows on the sphere

Stable equilibrium states²²

• Solid body rotations: $\psi = \Omega_* \cos \theta$

For a solid-body rotation, the invariants E and L are not independent, they must satisfy $E = 3L^2/4 \equiv E^*(L)$.

Solid body rotation

Introduction	Energy Cascade in Rotating/Stratified Turbulence	Coherent Structures and Mean-field Theory	Conclusion
000000	00000000	000000000000000000000000000000000000000	00

Equilibrium flows on the sphere

Stable equilibrium states²²

- Solid body rotations: $\psi = \Omega_* \cos \theta$
- Dipoles: $\psi = \Omega_* \cos \theta + \sqrt{3(E E^*(L))} \sin \theta \cos(\phi \phi_0)$

Solid body rotation

Dipole

Second-order phase transition with spontaneous symmetry breaking.²³

Introduction	Energy Cascade in Rotating/Stratified Turbulence	Coherent Structures and Mean-field Theory	Conclusion
000000	00000000	000000000000000000000000000000000000000	00
Geometrica	Refinement		

Stable equilibrium states

- Solid body rotations
- Dipoles
- Quadrupoles :

 $\psi_{\infty} = \psi_{20}(3\cos^2\theta - 1) + \psi_{21}\sin(2\theta)\sin(\phi - \phi_1) + \psi_{22}\sin^2\theta\sin(2(\phi - \phi_2))$

Theoretical Equilibrium: Quadrupole²⁴

²⁴C. Herbert (2013). J. Stat. Phys.

00000		00
000000		

Geometrical Refinement

Stable equilibrium states

- Solid body rotations
- Dipoles
- Quadrupoles :

 $\psi_{\infty} = \psi_{20}(3\cos^2\theta - 1) + \psi_{21}\sin(2\theta)\sin(\phi - \phi_1) + \psi_{22}\sin^2\theta\sin(2(\phi - \phi_2))$

to the second seco

Theoretical Equilibrium: Quadrupole²⁴

²⁴C. Herbert (2013). J. Stat. Phys.
²⁵B. Marston (2011). Physics; W. Qi and J. B. Marston (to appear). J. Stat. Mech.

Geometrical Refinement

Stable equilibrium states

- Solid body rotations
- Dipoles
- Quadrupoles :

 $\psi_{\infty} = \psi_{20}(3\cos^2\theta - 1) + \psi_{21}\sin(2\theta)\sin(\phi - \phi_1) + \psi_{22}\sin^2\theta\sin(2(\phi - \phi_2))$

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A<

Theoretical Equilibrium: Quadrupole²⁴

DNS Final State²⁵

Time dependent macrostates.

²⁴C. Herbert (2013). J. Stat. Phys.
²⁵B. Marston (2011). Physics; W. Qi and J. B. Marston (to appear). J. Stat. Mech.

Non-linear $\omega - \psi$ relationships are associated to strong vorticity gradients: e.g. the two-level system²⁷.

²⁶W. Qi and J. B. Marston (to appear). J. Stat. Mech.
²⁷F. Bouchet and J. Sommeria (2002). J. Fluid Mech. A. Venaille and F. Bouchet (2011a). J. Phys. Oceanogr.

Non-linear $\omega - \psi$ relationships are associated to strong vorticity gradients: e.g. the two-level system²⁷.

Perturbative expansion leads to core sharpening.

²⁶W. Qi and J. B. Marston (to appear). J. Stat. Mech.

²⁷F. Bouchet and J. Sommeria (2002). J. Fluid Mech. A. Venaille and F. Bouchet (2011a). J. Phys. Oceanogr.

Summary

How is energy transferred across scales in geophysical turbulence?

Energy cascade for Rotating-Stratified flows

- Statistical Mechanics in the restricted ensemble provides support to the idea that inverse cascades in rotating and rotating-stratified may exist due to the slow modes, even though the slow manifold is not rigorously invariant.
- On the contrary, it is predicted that the slow modes of stratified turbulence cascade energy downscale, because of the presence of the shear modes which do not contribute to potential enstrophy.

Introduction	Energy Cascade in Rotating/Stratified Turbulence	Coherent Structures and Mean-field Theory	Conclusion
000000	00000000	0000000000000	00

Summary

How are large-scale coherent structures formed in geophysical flows?

RSM mean-field theory for quasi-2D flows

- The mean-field theory allows one to compute statistical equilibrium states, which correspond to observed large-scale structures.
- Energy and enstrophy conservation yield complete condensation of the energy in the gravest modes²⁸. Higher-order Casimir invariants²⁹ or geometrical constraints³⁰ can prevent the condensation from being complete.
- Rotation can also arrest the cascade and lead to the formation of zonal flows, through the effect of waves³¹.
- Theoretical aspects: large deviations, non-equivalence of the statistical ensembles³².

- ³⁰C. Herbert (2013). *J. Stat. Phys.*
- ³¹P. B. Rhines (1975). J. Fluid Mech.

²⁸F. Bouchet and M. Corvellec (2010). J. Stat. Mech.

²⁹R. Abramov and A. J. Majda (2003). *Proc. Natl. Acad. Sci. U.S.A.*

³²R. S. Ellis et al. (2000). *J. Stat. Phys.* F. Bouchet (2008). *Physica D*; P.-H. Chavanis (2009). *Eur. Phys. J. B*; A. Venaille and F. Bouchet (2011b). *J. Stat. Phys.* C. Herbert et al. (2012a). *Phys. Rev. E*

Abramov, R. and A. J. Majda (2003). Proc. Natl. Acad. Sci. U.S.A. 100.7, p. 3841. Bartello, P. (1995). J. Atmos. Sci. 52, pp. 4410–4428. Bouchet, F. (2008). *Physica D* 237, pp. 1976–1981. Bouchet, F. and M. Corvellec (2010). J. Stat. Mech. 2010, P08021. Bouchet, F. and J. Sommeria (2002). J. Fluid Mech. 464, pp. 165–207. Chavanis, P.-H. (2009). *Eur. Phys. J. B* 70, pp. 73–105. Chavanis, P.-H. and J. Sommeria (1996). J. Fluid Mech. 314, pp. 267–297. Craya, A (1958). Publ. Sci. Tech. Ministère de l'Air 345. Ellis, R. S. et al. (2000). J. Stat. Phys. 101, pp. 999–1064. Herbert, C. (2013). J. Stat. Phys. 152, pp. 1084-1114. Herbert, C. et al. (2012a). *Phys. Rev. E* 85, p. 056304. — (2012b). J. Stat. Mech. 2012, P05023. Herbert, C. et al. (submitted). J. Fluid Mech. arXiv:1401.2103. Herring, J. R. (1974). *Phys. Fluids* 17, pp. 859–872. Kiessling, M. K. H. (2008). AIP Conf. Proc. 970, p. 91. Kraichnan, R. H. (1967). *Phys. Fluids* 10, pp. 1417–1423. — (1975). J. Fluid Mech. 67, pp. 155–175. Kraichnan, R. H. and D. C. Montgomery (1980). *Rep. Prog. Phys.* 43, p. 547. Kraichnan, R. H. (1973). J. Fluid Mech. 59, pp. 745-752. Lee, T. D. (1952). *Q. Appl. Math.* 10, pp. 69–74. Leith, C. E. (1980). J. Atmos. Sci. 37, pp. 958-968. Marino, R. et al. (2013a). Phys. Rev. E 87.3, p. 033016. — (2013b). *Europhys. Lett.* 102, p. 44006. Marston, B. (2011). *Physics* 4, p. 20. Miller, J. (1990). *Phys. Rev. Lett.* 65, pp. 2137–2140. Miller, J. et al. (1992). Phys. Rev. A 45, pp. 2328–2359. Moffatt, H. K. (1969). J. Fluid Mech. 35.1, pp. 117–129. Morrison, P. J. (1998). Rev. Mod. Phys. 70, pp. 467-521 Nastrom, G. D. et al. (1984). *Nature* 310, pp. 36–38. Nikurashin, M. et al. (2013). Nature Geoscience 6.1, pp. 48-51. Penrose, O. and J. L. Lebowitz (1971). J. Stat. Phys. 3.2, pp. 211-236. - (1979). In: Fluctuation Phenomena. Ed. by E. W. Montroll and J. L. Lebowitz. Amsterdam: North-Holland. Chap. 5, p. 293. Polzin, K. L. et al. (1997). Science 276.5309, pp. 93-96. Potters, M. et al. (2013). J. Stat. Mech. 02, P02017. Qi, W. and J. B. Marston (to appear). J. Stat. Mech. arXiv: 1312.2553v1 [physics.flu-dyn]. Rhines, P. B. (1975). J. Fluid Mech. 69, pp. 417-443. Robert, R. (1991). J. Stat. Phys. 65, pp. 531–553. Robert, R. and J. Sommeria (1991). J. Fluid Mech. 229, pp. 291-310. — (1992). *Phys. Rev. Lett.* 69, pp. 2776–2779.

Salmon, R. (1988). Ann. Rev. Fluid Mech. 20, pp. 225–256.
Serre, D. (1984). Physica D 13, pp. 105–136.
Turkington, B. and N. Whitaker (1996). SIAM J. Sci. Comput. 17, p. 1414.
Vallis, G. K. (2006). Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-scale Circulation. Cambridge University Press.
Venaille, A. and F. Bouchet (2011a). J. Phys. Oceanogr. 41, p. 1860.
— (2011b). J. Stat. Phys. 143, pp. 346–380.
Waite, M. L. and P. Bartello (2004). J. Fluid Mech. 517, pp. 281–308.
Waleffe, F. (1992). Phys. Fluids A 4, p. 350.

Accessible thermodynamic space for rotating-stratified flows, waves (red) and slow manifold (blue).

The helical decomposition for the 3D Euler equation

Euler equations for 3D homogeneous isotropic turbulence:

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = - \nabla P_{\mathrm{s}}$$
 $\nabla \cdot \mathbf{u} = 0.$

Helical decomposition in Fourier space³³: $\mathbf{
abla} imes \mathbf{h}_{\pm}(\mathbf{k}) = \pm k \mathbf{h}_{\pm}(\mathbf{k})$,

$$\mathbf{u}(\mathbf{x}) = \sum_{\mathbf{k}} [u_{+}(\mathbf{k})\mathbf{h}_{+}(\mathbf{k}) + u_{-}(\mathbf{k})\mathbf{h}_{-}(\mathbf{k})]e^{i\mathbf{k}\cdot\mathbf{x}},$$
$$\boldsymbol{\omega}(\mathbf{x}) = \boldsymbol{\nabla} \times \mathbf{u} = \sum_{\mathbf{k}} k[u_{+}(\mathbf{k})\mathbf{h}_{+}(\mathbf{k}) - u_{-}(\mathbf{k})\mathbf{h}_{-}(\mathbf{k})]e^{i\mathbf{k}\cdot\mathbf{x}}$$

Automatically enforces incompressibility: $\mathbf{k} \cdot \mathbf{h}_{\pm}(\mathbf{k}) = 0$. Energy and Helicity:

$$E = \frac{1}{2} \int \mathbf{u}(\mathbf{x})^2 d\mathbf{x} = \frac{1}{2} \sum_{\mathbf{k}} [|u_+(\mathbf{k})|^2 + |u_-(\mathbf{k})|^2],$$
$$H = \frac{1}{2} \int \mathbf{u}(\mathbf{x}) \cdot \boldsymbol{\omega}(\mathbf{x}) d\mathbf{x} = \frac{1}{2} \sum_{\mathbf{k}} k[|u_+(\mathbf{k})|^2 - |u_-(\mathbf{k})|^2].$$

³³A Craya (1958). Publ. Sci. Tech. Ministère de l'Air, J. R. Herring (1974). Phys. Fluids, F. Waleffe (1992). Phys. Fluids A